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Simple random walk on Z1

The cat starts at 0 and jumps randomly.

What is the probability that the cat never return to the starting
position?



Simple random walk on Z1

Cat hits 0 Cat avoids 0 (so far)

What is P0{cat avoids 0 forever}?

Theorem 1. P0{cat avoids 0 forever} = 0.
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Theorem 1 is equivalent to the gambler’s ruin

After one step, the cat will be at position 1 or position −1 (each
has probability 1

2 ).

Conditioning on the first step,

P0{cat never returns to 0}

=
1
2

P1{cat never visits 0}+ 1
2

P−1{cat never visits 0}.

By symmetry,

P1{cat never visits 0} = P−1{cat never visits 0}.

Hence

P0{cat never returns to 0} = P1{cat never visits 0}.
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Gambler’s ruin

Start with $1. Gamble with a fair but infinitely rich guy.

Then P1{cat never visits 0} = P1{you never bankrupt}.
Theorem 1 implies you will surely go bankrupt.
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Proof of Theorem 1

Aim: P1{cat never visits 0} = 0.
For x ≥ 0, let

u(x) = Px{cat never visits 0}. (starting at x)

Then u(0) = 0 (since it starts at 0), and conditioning on the first
step,

u(x) =
1
2

u(x − 1) +
1
2

u(x + 1), x ≥ 1.

(u is discrete harmonic on Z+.)

⇒ u(x)− u(x − 1) = u(x + 1)− u(x).

So u has constant increment. But 0 ≤ u(x) ≤ 1. So u ≡ 0. 2
We have shown in fact that Px{cat never visits 0} = 0 for all x .
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Simple random walk on Z2.

The frog starts at (0,0).

Will the frog return to the starting leaf?



Simple random walk on Z3.

The monkey starts at (0,0,0).

Will the monkey return to the starting point?



Main theorem

Theorem 2 (Polya 1921). Consider the simple random walk on
Zd , starting at the origin.

I If d = 1 or 2, the random walker will return to the starting
point with probability 1. (recurrent)

I For d ≥ 3, there is a positive probability that the random
walker will not return to the starting point. (transient)

The electric network approach is due to Nash-Williams (1959).
Our presentation follows Doyle (1994).
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Connection with electric networks

Construct a network according to the lattice (the figure is the
network for Z2). Put a unit resistor on each edge.



Connection with electric networks
Claim: walk is recurrent⇔ effective resistance is∞



Connection with electric networks

Theorem 1 becomes an easy corollary.

Resistance from 0 to ‘infinity’ is

R =
1
2
+

1
2
+

1
2
+ · · · =∞.

Hence the walk on Z1 is recurrent.



Proof of claim (network)
Consider a large square containing (0,0). Ground the
boundary. Put a unit battery.

V (x , y) is the potential at the node (x , y). V (0,0) = 1.
V (x , y) = 0 on the boundary.



Proof of claim (network)
Consider an interior node 6= (0,0). Ohm’s law: V = IR

I1 = V (x , y + 1)− V (x , y), I2 = V (x − 1, y)− V (x , y),
I3 = V (x , y)− V (x , y − 1), I4 = V (x , y)− V (x + 1, y).
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Proof of claim (network)

current in = current out: I1 + I2 = I3 + I4. Hence

V (x , y + 1)− V (x , y) + V (x − 1, y)− V (x , y)
= V (x , y)− V (x , y − 1) + V (x , y)− V (x + 1, y)

So V has the averaging property:

V (x , y) =
1
4
(V (x−1, y)+V (x , y+1)+V (x+1, y)+V (x , y−1)).

(Call V discrete harmonic.) Thus
V (0,0) = 1
V (x , y) = 0 on boundary
V is discrete harmonic on interior \ {(0,0)}
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Proof of claim (probability)

Let

U(x , y) = P(x ,y){frog visits (0,0) before hitting boundary}.

Then U(0,0) = 1 and U(x , y) = 0 on boundary.



Proof of claim (probability)

On interior \{(0,0)}, conditioning on the first step,

U(x , y) =
1
4
(U(x−1, y)+U(x , y+1)+U(x+1, y)+U(x , y−1)).

We conclude:
U(0,0) = 1
U(x , y) = 0 on boundary
U is discrete harmonic on interior \ {(0,0)}

Hence U and V satisfies the same equations!

⇒ U(x , y) = V (x , y) (uniqueness of solution)

Probability is the voltage!



Proof of claim (probability)

On interior \{(0,0)}, conditioning on the first step,

U(x , y) =
1
4
(U(x−1, y)+U(x , y+1)+U(x+1, y)+U(x , y−1)).

We conclude:
U(0,0) = 1
U(x , y) = 0 on boundary
U is discrete harmonic on interior \ {(0,0)}

Hence U and V satisfies the same equations!

⇒ U(x , y) = V (x , y) (uniqueness of solution)

Probability is the voltage!



Proof of claim (probability)

On interior \{(0,0)}, conditioning on the first step,

U(x , y) =
1
4
(U(x−1, y)+U(x , y+1)+U(x+1, y)+U(x , y−1)).

We conclude:
U(0,0) = 1
U(x , y) = 0 on boundary
U is discrete harmonic on interior \ {(0,0)}

Hence U and V satisfies the same equations!

⇒ U(x , y) = V (x , y) (uniqueness of solution)

Probability is the voltage!



Proof of claim (together)

P(0,0){frog never returns to (0,0) before hitting boundary}

= 1− P(0,0){frog returns to (0,0) before hitting boundary}

= 1− 1
4
(U(−1,0) + U(1,0) + U(0,1) + U(0,−1))

= 1− 1
4
(V (−1,0) + V (1,0) + V (0,1) + V (0,−1))

=
1
4
[(1−V (−1,0))+(1−V (1,0))+(1−V (0,1))+(1−V (0,−1))]

=
1
4

current coming out from (0,0)

=
1

4× effective resistance between (0,0) and boundary
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Proof of claim (together)

Letting the boundary farther and farther away,

P(0,0){frog never returns to (0,0)}

=
1

4× effective resistance between (0,0) and ‘infinity’

=
1

4R
. 2

Note: On Z1, we have

P0{cat never returns to 0} = 1
2R

.

On Z3, we have

P(0,0,0){monkey never returns to (0,0,0)} = 1
6R

.
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Effective resistance for Z2 is infinite!
Replace the yellow edges with wires (shorting). Effective
resistance decreases.

R ≥ 1
4

(
1 +

1
3
+

1
5
+ · · ·

)
=

1
4

∞∑
n=1

1
2n + 1

=∞.
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Effective resistance for Z3 is finite!

Idea: If we cut away edges, resistance increases. Thus, if we
can find a subnetwork with finite resistance, the whole Z3 has
finite resistance.

Construction: Start with 3 rays starting at the origin.



Effective resistance for Z3 is finite!

When a ray hits the plane x + y + z = 21−1, it splits into 3 rays:

Continue: When each ray hits the plane x + y + z = 2n − 1, it
splits into 3 rays.



Effective resistance for Z3 is finite!
The desired subnetwork is the traces of all the rays.



Effective resistance for Z3 is finite!

The subnetwork can be compared with a tree:



Effective resistance for Z3 is finite!
Resistance of the tree:

Resistance =
1
3
+

2
9
+

4
27

+· · · = 1
3

(
1 +

2
3
+

(
2
3

)2

+ · · ·

)
<∞



Further directions

I Discrete harmonic functions (U(x , y) = average)↔
harmonic functions (∂

2u
∂x2 + ∂2u

∂y2 = 0)

I Gambler’s ruin and martingales, financial mathematics
I Simple random walk and Brownian motion
I Random walk on trees and graphs
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