Will a random walker return home?

Solution using electric networks

Ting-Kam Leonard Wong

Department of Mathematics, University of Washington wongting@uw.edu

Enrichment Programme for Young Mathematics Talents
27 June 2012

Simple random walk on \mathbb{Z}^{1}

The cat starts at 0 and jumps randomly.

What is the probability that the cat never return to the starting position?

Simple random walk on \mathbb{Z}^{1}

Cat hits 0
 Cat avoids 0 (so far)

What is $\mathbf{P}_{0}\{$ cat avoids 0 forever\}?
Theorem 1. $\mathrm{P}_{0}\{$ cat avoids 0 forever $\}=0$.

Simple random walk on \mathbb{Z}^{1}

Cat hits $0 \quad$ Cat avoids 0 (so far)

What is \mathbf{P}_{0} \{cat avoids 0 forever\}?
Theorem 1. $\mathbf{P}_{0}\{$ cat avoids 0 forever $\}=0$.

Theorem 1 is equivalent to the gambler's ruin

After one step, the cat will be at position 1 or position -1 (each has probability $\frac{1}{2}$).

Conditioning on the first step,
$\mathbf{P}_{0}\{$ cat never returns to 0$\}$

By symmetry,
$P_{1}\{$ cait never visits 0$\}=P_{-1}\{$ cat never visits 0$\}$.
Hence
$\mathbf{P}_{0}\{$ cat never returns to 0$\}=\mathbf{P}_{1}\{$ cat never visits 0$\}$.

Theorem 1 is equivalent to the gambler's ruin

After one step, the cat will be at position 1 or position - 1 (each has probability $\frac{1}{2}$).
Conditioning on the first step,

$$
\begin{aligned}
& \mathbf{P}_{0}\{\text { cat never returns to } 0\} \\
= & \frac{1}{2} \mathbf{P}_{1}\{\text { cat never visits } 0\}+\frac{1}{2} \mathbf{P}_{-1}\{\text { cat never visits } 0\} .
\end{aligned}
$$

By symmetry,
$\mathbf{D}_{1}\{$ cat never visits 0$\}=P_{-1}\{$ cat never visits 0$\}$
Hence
$\boldsymbol{P}_{0}\{$ cat never returns to 0$\}=P_{1}\{$ cat never visits 0$\}$.

Theorem 1 is equivalent to the gambler's ruin

After one step, the cat will be at position 1 or position -1 (each has probability $\frac{1}{2}$).
Conditioning on the first step,
$\mathbf{P}_{0}\{$ cat never returns to 0$\}$
$=\frac{1}{2} \mathbf{P}_{1}\{$ cat never visits 0$\}+\frac{1}{2} \mathbf{P}_{-1}\{$ cat never visits 0$\}$.
By symmetry,
$\mathbf{P}_{1}\{$ cat never visits 0$\}=\mathbf{P}_{-1}\{$ cat never visits 0$\}$.
Hence
$\mathbf{P}_{0}\{$ cat never returns to 0$\}=\mathbf{P}_{1}\{$ cat never visits 0$\}$.

Theorem 1 is equivalent to the gambler's ruin

After one step, the cat will be at position 1 or position -1 (each has probability $\frac{1}{2}$).
Conditioning on the first step,
$\mathbf{P}_{0}\{$ cat never returns to 0$\}$
$=\frac{1}{2} \mathbf{P}_{1}\{$ cat never visits 0$\}+\frac{1}{2} \mathbf{P}_{-1}\{$ cat never visits 0$\}$.
By symmetry,
$\mathbf{P}_{1}\{$ cat never visits 0$\}=\mathbf{P}_{-1}\{$ cat never visits 0$\}$.
Hence
$\mathbf{P}_{0}\{$ cat never returns to 0$\}=\mathbf{P}_{1}\{$ cat never visits 0$\}$.

Gambler's ruin

Start with $\$ 1$. Gamble with a fair but infinitely rich guy.

Then $\mathbf{P}_{1}\{$ cat never visits 0$\}=\mathbf{P}_{1}\{$ you never bankrupt $\}$.
Theorem 1 implies you will surely go bankrupt.

Gambler's ruin

Start with $\$ 1$. Gamble with a fair but infinitely rich guy.

Then $\mathbf{P}_{1}\{$ cat never visits 0$\}=\mathbf{P}_{1}\{$ you never bankrupt $\}$.
Theorem 1 implies you will surely go bankrupt.

Gambler's ruin

Start with $\$ 1$. Gamble with a fair but infinitely rich guy.

Then $\mathbf{P}_{1}\{$ cat never visits 0$\}=\mathbf{P}_{1}$ \{you never bankrupt $\}$. Theorem 1 implies you will surely go bankrupt.

Proof of Theorem 1

Aim: $\mathbf{P}_{1}\{$ cat never visits 0$\}=0$.
For $x \geq 0$, let

$$
\left.u(x)=\mathbf{P}_{x}\{\text { cat never visits } 0\} . \text { (starting at } x\right)
$$

Then $u(0)=0$ (since it starts at 0), and conditioning on the first step,

$$
u(x)=\frac{1}{2} u(x-1)+\frac{1}{2} u(x+1), \quad x \geq 1 .
$$

(u is discrete harmonic on \mathbb{Z}^{+}.)

$$
\Rightarrow u^{\prime}(x)-u^{\prime}(x-1)=u(x+1)-u(x)
$$

So u has constant increment. But $0 \leq u(x) \leq 1$. So $u \equiv 0$. \square We have shown in fact that $\mathbf{P}_{x}\{$ cat never visits 0$\}=0$ for all x.

Proof of Theorem 1

Aim: $\mathbf{P}_{1}\{$ cat never visits 0$\}=0$.
For $x \geq 0$, let

$$
u(x)=\mathbf{P}_{x}\{\text { cat never visits } 0\} . \text { (starting at } x \text {) }
$$

Then $u(0)=0$ (since it starts at 0), and conditioning on the first step,

(u is discrete harmonic on \mathbb{Z}^{+}.)

$$
\Rightarrow u(x)-u(x-1)=u(x+1)-u(x)
$$

So u has constant increment. But $0 \leq u(x) \leq 1$. So $u \equiv 0$. \square We have shown in fact that $\mathbf{P}_{x}\{$ cat never visits 0$\}=0$ for all x.

Proof of Theorem 1

Aim: $\mathbf{P}_{1}\{$ cat never visits 0$\}=0$.
For $x \geq 0$, let

$$
\left.u(x)=\mathbf{P}_{x}\{\text { cat never visits } 0\} . \text { (starting at } x\right)
$$

Then $u(0)=0$ (since it starts at 0), and conditioning on the first step,

(u is discrete harmonic on \mathbb{Z}^{+}.)

$$
\Rightarrow u^{\prime}(x)-u^{\prime}(x-1)=u(x+1)-u(x)
$$

So u has constant increment. But $0 \leq u(x) \leq 1$. So $u \equiv 0$. \square We have shown in fact that $\mathbf{P}_{x}\{$ cat never visits 0$\}=0$ for all x.

Proof of Theorem 1

Aim: $\mathbf{P}_{1}\{$ cat never visits 0$\}=0$.
For $x \geq 0$, let

$$
\left.u(x)=\mathbf{P}_{x}\{\text { cat never visits } 0\} . \text { (starting at } x\right)
$$

Then $u(0)=0$ (since it starts at 0), and conditioning on the first step,

$$
u(x)=\frac{1}{2} u(x-1)+\frac{1}{2} u(x+1), \quad x \geq 1 .
$$

(u is discrete harmonic on \mathbb{Z}^{+}.)

$$
\Rightarrow u(x)-u(x-1)=u(x+1)-u(x)
$$

So u has constant increment. But $0 \leq u(x) \leq 1$. So $u \equiv 0$. \square We have shown in fact that $\mathbf{P}_{x}\{$ cat never visits 0$\}=0$ for all x.

Proof of Theorem 1

Aim: $\mathbf{P}_{1}\{$ cat never visits 0$\}=0$.
For $x \geq 0$, let

$$
\left.u(x)=\mathbf{P}_{x}\{\text { cat never visits } 0\} . \text { (starting at } x\right)
$$

Then $u(0)=0$ (since it starts at 0), and conditioning on the first step,

$$
u(x)=\frac{1}{2} u(x-1)+\frac{1}{2} u(x+1), \quad x \geq 1 .
$$

(u is discrete harmonic on \mathbb{Z}^{+}.)

So u has constant increment. But $0 \leq u(x) \leq 1$. So $u \equiv 0$. \square We have shown in fact that $\mathbf{P}_{x}\{$ cat never visits 0$\}=0$ for all x.

Proof of Theorem 1

Aim: $\mathbf{P}_{1}\{$ cat never visits 0$\}=0$.
For $x \geq 0$, let

$$
\left.u(x)=\mathbf{P}_{x}\{\text { cat never visits } 0\} . \text { (starting at } x\right)
$$

Then $u(0)=0$ (since it starts at 0), and conditioning on the first step,

$$
u(x)=\frac{1}{2} u(x-1)+\frac{1}{2} u(x+1), \quad x \geq 1 .
$$

(u is discrete harmonic on \mathbb{Z}^{+}.)

$$
\Rightarrow u(x)-u(x-1)=u(x+1)-u(x) .
$$

So u has constant increment.

Proof of Theorem 1

Aim: $\mathbf{P}_{1}\{$ cat never visits 0$\}=0$.
For $x \geq 0$, let

$$
\left.u(x)=\mathbf{P}_{x}\{\text { cat never visits } 0\} . \text { (starting at } x\right)
$$

Then $u(0)=0$ (since it starts at 0), and conditioning on the first step,

$$
u(x)=\frac{1}{2} u(x-1)+\frac{1}{2} u(x+1), \quad x \geq 1 .
$$

(u is discrete harmonic on \mathbb{Z}^{+}.)

$$
\Rightarrow u(x)-u(x-1)=u(x+1)-u(x)
$$

So u has constant increment. But $0 \leq u(x) \leq 1$. So $u \equiv 0$. \square We have shown in fact that $\mathbf{P}_{x}\{$ cat never visits 0$\}=0$ for all x.

Proof of Theorem 1

Aim: $\mathbf{P}_{1}\{$ cat never visits 0$\}=0$.
For $x \geq 0$, let

$$
\left.u(x)=\mathbf{P}_{x}\{\text { cat never visits } 0\} . \text { (starting at } x\right)
$$

Then $u(0)=0$ (since it starts at 0), and conditioning on the first step,

$$
u(x)=\frac{1}{2} u(x-1)+\frac{1}{2} u(x+1), \quad x \geq 1 .
$$

(u is discrete harmonic on \mathbb{Z}^{+}.)

$$
\Rightarrow u(x)-u(x-1)=u(x+1)-u(x) .
$$

So u has constant increment. But $0 \leq u(x) \leq 1$. So $u \equiv 0$. \square We have shown in fact that $\mathbf{P}_{x}\{$ cat never visits 0$\}=0$ for all x.

Simple random walk on \mathbb{Z}^{2}.

The frog starts at $(0,0)$.

Will the frog return to the starting leaf?

Simple random walk on \mathbb{Z}^{3}.

The monkey starts at $(0,0,0)$.

Will the monkey return to the starting point?

Main theorem

Theorem 2 (Polya 1921). Consider the simple random walk on \mathbb{Z}^{d}, starting at the origin.

- If $d=1$ or 2 , the random walker will return to the starting point with probability 1. (recurrent)
- For $d \geq 3$, there is a positive probability that the random walker will not return to the starting point. (transient)
The electric network approach is due to Nash-Williams (1959). Our presentation follows Doyle (1994).

Main theorem

Theorem 2 (Polya 1921). Consider the simple random walk on \mathbb{Z}^{d}, starting at the origin.

- If $d=1$ or 2 , the random walker will return to the starting point with probability 1. (recurrent)
- For $d \geq 3$, there is a positive probability that the random walker will not return to the starting point. (transient)
The electric network approach is due to Nash-Williams (1959). Our presentation follows Doyle (1994).

Connection with electric networks

Construct a network according to the lattice (the figure is the network for \mathbb{Z}^{2}). Put a unit resistor on each edge.

Connection with electric networks

Claim: walk is recurrent \Leftrightarrow effective resistance is ∞

Connection with electric networks

Theorem 1 becomes an easy corollary.

Resistance from 0 to 'infinity' is

$$
R=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots=\infty
$$

Hence the walk on \mathbb{Z}^{1} is recurrent.

Proof of claim (network)

Consider a large square containing (0,0). Ground the boundary. Put a unit battery.

IVolt

$V(x, y)$ is the potential at the node $(x, y) . V(0,0)=1$.
$V(x, y)=0$ on the boundary.

Proof of claim (network)

Consider an interior node $\neq(0,0)$. Ohm's law: $V=I R$

Proof of claim (network)

Consider an interior node $\neq(0,0)$. Ohm's law: $V=I R$

$$
\begin{aligned}
& I_{1}=V(x, y+1)-V(x, y), I_{2}=V(x-1, y)-V(x, y), \\
& I_{3}=V(x, y)-V(x, y-1), I_{4}=V(x, y)-V(x+1, y) .
\end{aligned}
$$

Proof of claim (network)

current in = current out: $I_{1}+I_{2}=I_{3}+I_{4}$. Hence

$$
\begin{aligned}
& V(x, y+1)-V(x, y)+V(x-1, y)-V(x, y) \\
= & V(x, y)-V(x, y-1)+V(x, y)-V(x+1, y)
\end{aligned}
$$

So V has the averaging property:
$V(x, y)=\frac{1}{4}(V(x-1, y)+V(x, y+1)+V(x+1, y)+V(x, y-1))$.
(Call V discrete harmonic.) Thus

$$
\left\{\begin{array}{l}
V(0,0)=1 \\
V(x, y)=0 \text { on boundary } \\
V \text { is discrete harmonic on interior } \backslash\{(0,0)\}
\end{array}\right.
$$

Proof of claim (network)

current in = current out: $I_{1}+I_{2}=I_{3}+I_{4}$. Hence

$$
\begin{aligned}
& V(x, y+1)-V(x, y)+V(x-1, y)-V(x, y) \\
= & V(x, y)-V(x, y-1)+V(x, y)-V(x+1, y)
\end{aligned}
$$

So V has the averaging property:
$V(x, y)=\frac{1}{4}(V(x-1, y)+V(x, y+1)+V(x+1, y)+V(x, y-1))$.
(Call V discrete harmonic.) Thus

Proof of claim (network)

current in = current out: $I_{1}+I_{2}=I_{3}+I_{4}$. Hence

$$
\begin{aligned}
& V(x, y+1)-V(x, y)+V(x-1, y)-V(x, y) \\
= & V(x, y)-V(x, y-1)+V(x, y)-V(x+1, y)
\end{aligned}
$$

So V has the averaging property:
$V(x, y)=\frac{1}{4}(V(x-1, y)+V(x, y+1)+V(x+1, y)+V(x, y-1))$.
(Call V discrete harmonic.)

Proof of claim (network)

current in = current out: $I_{1}+I_{2}=I_{3}+I_{4}$. Hence

$$
\begin{aligned}
& V(x, y+1)-V(x, y)+V(x-1, y)-V(x, y) \\
= & V(x, y)-V(x, y-1)+V(x, y)-V(x+1, y)
\end{aligned}
$$

So V has the averaging property:
$V(x, y)=\frac{1}{4}(V(x-1, y)+V(x, y+1)+V(x+1, y)+V(x, y-1))$.
(Call V discrete harmonic.) Thus

$$
\left\{\begin{array}{l}
V(0,0)=1 \\
V(x, y)=0 \text { on boundary } \\
V \text { is discrete harmonic on interior } \backslash\{(0,0)\}
\end{array}\right.
$$

Proof of claim (probability)

Let

$$
U(x, y)=\mathbf{P}_{(x, y)}\{\text { frog visits }(0,0) \text { before hitting boundary }\} .
$$

Then $U(0,0)=1$ and $U(x, y)=0$ on boundary.

Proof of claim (probability)

On interior $\backslash\{(0,0)\}$, conditioning on the first step,
$U(x, y)=\frac{1}{4}(U(x-1, y)+U(x, y+1)+U(x+1, y)+U(x, y-1))$.
We conclude:

Probability is the voltage!

Proof of claim (probability)

On interior $\backslash\{(0,0)\}$, conditioning on the first step,
$U(x, y)=\frac{1}{4}(U(x-1, y)+U(x, y+1)+U(x+1, y)+U(x, y-1))$.
We conclude:

$$
\left\{\begin{array}{l}
U(0,0)=1 \\
U(x, y)=0 \text { on boundary } \\
U \text { is discrete harmonic on interior } \backslash\{(0,0)\}
\end{array}\right.
$$

Hence U and V satisfies the same equations!

$$
\Rightarrow U(x, y)=V(x, y) \text { (uniqueness of solution) }
$$

Probability is the voltage!

Proof of claim (probability)

On interior $\backslash\{(0,0)\}$, conditioning on the first step,
$U(x, y)=\frac{1}{4}(U(x-1, y)+U(x, y+1)+U(x+1, y)+U(x, y-1))$.
We conclude:

$$
\left\{\begin{array}{l}
U(0,0)=1 \\
U(x, y)=0 \text { on boundary } \\
U \text { is discrete harmonic on interior } \backslash\{(0,0)\}
\end{array}\right.
$$

Hence U and V satisfies the same equations!

$$
\Rightarrow U(x, y)=V(x, y) \text { (uniqueness of solution) }
$$

Probability is the voltage!

Proof of claim (together)

$\mathbb{P}_{(0,0)}\{$ frog never returns to $(0,0)$ before hitting boundary\}
$=1-\mathbb{P}_{(0,0)}\{$ frog returns to $(0,0)$ before hitting boundary $\}$

$$
\begin{aligned}
& =1-\frac{1}{4}(U(-1,0)+U(1,0)+U(0,1)+U(0,-1)) \\
& =1-\frac{1}{4}(V(-1,0)+V(1,0)+V(0,1)+V(0,-1))
\end{aligned}
$$

$$
=\frac{1}{4}[(1-V(-1,0))+(1-V(1,0))+(1-V(0,1))+(1-V(0,-1))]
$$

Proof of claim (together)

$\mathbb{P}_{(0,0)}\{$ frog never returns to $(0,0)$ before hitting boundary $\}$
$=1-\mathbb{P}_{(0,0)}\{$ frog returns to $(0,0)$ before hitting boundary $\}$

$=\frac{1}{4}$ current coming out from $(0,0)$

Proof of claim (together)

$\mathbb{P}_{(0,0)}\{$ frog never returns to $(0,0)$ before hitting boundary $\}$
$=1-\mathbb{P}_{(0,0)}\{$ frog returns to $(0,0)$ before hitting boundary $\}$

$$
=1-\frac{1}{4}(U(-1,0)+U(1,0)+U(0,1)+U(0,-1))
$$

$$
=1-\frac{1}{4}(V(-1,0)+V(1,0)+V(0,1)+V(0,-1))
$$

$=\frac{1}{4}$ current coming out from $(0,0)$

Proof of claim (together)

$\mathbb{P}_{(0,0)}\{$ frog never returns to $(0,0)$ before hitting boundary\}
$=1-\mathbb{P}_{(0,0)}\{$ frog returns to $(0,0)$ before hitting boundary $\}$

$$
\begin{aligned}
& =1-\frac{1}{4}(U(-1,0)+U(1,0)+U(0,1)+U(0,-1)) \\
& =1-\frac{1}{4}(V(-1,0)+V(1,0)+V(0,1)+V(0,-1))
\end{aligned}
$$

Proof of claim (together)

$\mathbb{P}_{(0,0)}\{$ frog never returns to $(0,0)$ before hitting boundary $\}$
$=1-\mathbb{P}_{(0,0)}\{$ frog returns to $(0,0)$ before hitting boundary $\}$

$$
\begin{aligned}
& =1-\frac{1}{4}(U(-1,0)+U(1,0)+U(0,1)+U(0,-1)) \\
& =1-\frac{1}{4}(V(-1,0)+V(1,0)+V(0,1)+V(0,-1))
\end{aligned}
$$

$$
=\frac{1}{4}[(1-V(-1,0))+(1-V(1,0))+(1-V(0,1))+(1-V(0,-1))]
$$

Proof of claim (together)

$\mathbb{P}_{(0,0)}\{$ frog never returns to $(0,0)$ before hitting boundary $\}$
$=1-\mathbb{P}_{(0,0)}\{$ frog returns to $(0,0)$ before hitting boundary $\}$

$$
\begin{aligned}
& =1-\frac{1}{4}(U(-1,0)+U(1,0)+U(0,1)+U(0,-1)) \\
& =1-\frac{1}{4}(V(-1,0)+V(1,0)+V(0,1)+V(0,-1))
\end{aligned}
$$

$$
=\frac{1}{4}[(1-V(-1,0))+(1-V(1,0))+(1-V(0,1))+(1-V(0,-1))]
$$

$$
=\frac{1}{4} \text { current coming out from }(0,0)
$$

Proof of claim (together)

$\mathbb{P}_{(0,0)}\{$ frog never returns to $(0,0)$ before hitting boundary\}
$=1-\mathbb{P}_{(0,0)}\{$ frog returns to $(0,0)$ before hitting boundary $\}$

$$
\begin{aligned}
& =1-\frac{1}{4}(U(-1,0)+U(1,0)+U(0,1)+U(0,-1)) \\
& =1-\frac{1}{4}(V(-1,0)+V(1,0)+V(0,1)+V(0,-1))
\end{aligned}
$$

$$
=\frac{1}{4}[(1-V(-1,0))+(1-V(1,0))+(1-V(0,1))+(1-V(0,-1))]
$$

$$
=\frac{1}{4} \text { current coming out from }(0,0)
$$

$=\frac{1}{4 \times \text { effective resistance between }(0,0) \text { and boundary }}$.

Proof of claim (together)

Letting the boundary farther and farther away,

$$
\begin{aligned}
& \mathbf{P}_{(0,0)}\{\text { frog never returns to }(0,0)\} \\
= & \frac{1}{4 \times \text { effective resistance between }(0,0) \text { and 'infinity' }} \\
= & \frac{1}{4 R} .
\end{aligned}
$$

Note: On \mathbb{Z}^{1}, we have

On \mathbb{Z}^{3}, we have

Proof of claim (together)

Letting the boundary farther and farther away,

$$
\begin{aligned}
& \mathbf{P}_{(0,0)}\{\text { frog never returns to }(0,0)\} \\
= & \frac{1}{4 \times \text { effective resistance between }(0,0) \text { and 'infinity' }} \\
= & \frac{1}{4 R} .
\end{aligned}
$$

Note: On \mathbb{Z}^{1}, we have

$$
\mathbf{P}_{0}\{\text { cat never returns to } 0\}=\frac{1}{2 R} \text {. }
$$

On \mathbb{Z}^{3}, we have

$$
\mathbf{P}_{(0,0,0)}\{\text { monkey never returns to }(0,0,0)\}=\frac{1}{6 R}
$$

Effective resistance for \mathbb{Z}^{2} is infinite!

Replace the yellow edges with wires (shorting). Effective resistance decreases.

Effective resistance for \mathbb{Z}^{2} is infinite!

Replace the yellow edges with wires (shorting). Effective resistance decreases.

$$
R \geq \frac{1}{4}\left(1+\frac{1}{3}+\frac{1}{5}+\cdots\right)=\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{2 n+1}=\infty .
$$

Effective resistance for \mathbb{Z}^{3} is finite!

Idea: If we cut away edges, resistance increases. Thus, if we can find a subnetwork with finite resistance, the whole \mathbb{Z}^{3} has finite resistance.

Construction: Start with 3 rays starting at the origin.

Effective resistance for \mathbb{Z}^{3} is finite!

When a ray hits the plane $x+y+z=2^{1}-1$, it splits into 3 rays:

Continue: When each ray hits the plane $x+y+z=2^{n}-1$, it splits into 3 rays.

Effective resistance for \mathbb{Z}^{3} is finite!

The desired subnetwork is the traces of all the rays.

Effective resistance for \mathbb{Z}^{3} is finite!

The subnetwork can be compared with a tree:

Effective resistance for \mathbb{Z}^{3} is finite!

Resistance of the tree:

Resistance $=\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\cdots=\frac{1}{3}\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)<\infty$

Further directions

- Discrete harmonic functions $(U(x, y)=$ average $) \leftrightarrow$ harmonic functions $\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0\right)$
- Gambler's ruin and martingales, financial mathematics
- Simple random walk and Brownian motion
- Random walk on trees and graphs

References and further readings

W. Feller, An introduction to probability theory and its applications, Volume 1.
P. G. Doyle and J. L. Snell, Random walks and electric networks.
P. G. Doyle, Application of Rayleigh's short-cut method to Polya's recurrence problem.
D. A. Levin, Y. Peres, E. L. Wilmer, Markov chains and mixing times.

