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Yahoo in 1996: Human-edited directory
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Only 5 directory entries for “Linear Algebra”
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Google today

I ~10,000,000 Linear Algebra pages, rankedmostly by importance
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Part I:
PageRank and Randomwalk
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PageRank Algorithm

I Named after Larry Page, Google cofounder and current CEO
I Determines webpages’ importance only by link structure of the

directed graph of webpages

I Based on stationary distribution of a randomwalk

I Spectral graph theory!
I For simplicity, focus on undirected, regular graphs in this talk
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RandomWalk

I Stochastic progress on a graph (undirected for now)

I Starts from a vertex, at each time step tmoves to a uniformly random
neighbour of the current vertex
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Distributionpt

Probability transition matrixK
Row vectorpt : distribution at time t

I pt+1 = ptK
I pt = p0Kt

I Doespt converge as t increases?
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Stationary distribution

Ifpt converges, the limiting distributionp∞ must be stationary

p∞K = p∞

I uniform distribution always a stationary distribution (for an
undirected, regular graph)
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Limiting distribution: unique?

I Not unique on disconnected graphs
(Some vertex not reachable from some other vertex via intermediate
vertices)

I Not unique on bipartite graphs
(Can partition all vertices into two subsets V1, V2 so that all edges only
go between V1 and V2)
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Unique limiting distribution

Theorem (Uniqueness)
An undirected, regular, connected, non-bipartite graph has a unique
stationary distributionp∗.
Further, given any initial distributionp0,

lim
t→∞

pt = p∗.
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Eigenvalues and eigenvectors

λ ∈ R is an eigenvalue andq ∈ Rn is an eigenvector ofK if

qK = λq

Fact: Transition matrixK of an undirected graph is real symmetric

Lemma (Spectral Theorem)
Any n× n real symmetric matrixK has n eigenvalue-eigenvector pairs

q(1)K = λ1q(1)

...

q(n)K = λnq(n)

such that {q(1), . . . ,q(n)} is an orthogonal basis
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Proof

Theorem (Uniqueness)
An undirected, regular, connected, non-bipartite graph has a unique
stationary distributionp∗.
Further, given any initial distributionp0,

lim
t→∞

pt = p∗.

Proof.
By spectral theorem, {q(1), . . . ,q(n)} forms a basis. Expand

p0 =

n∑
i=1

αiq(i).

pt = p0Kt =

n∑
i=1

αiq(i)Kt.
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Proof (continued)

pt = p0Kt =

n∑
i=1

αiq(i)Kt

Since

q(i)Kt = λiq(i)Kt−1 = λi
2q(i)Kt−2 = · · · = λi

tq(i),

the top equation becomes

pt =

n∑
i=1

αiλi
tq(i).
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Graph spectrum

Assume eigenvalues are sorted

λ1 > λ2 > . . . > λn

One can show
1 > λ1 and λn > −1

Recall: λ1 = 1, uniform distribution as an eigenvector

Proposition
λ2 = 1 if and only if disconnected graph

Proposition
λn = −1 if and only if bipartite graph
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Proof (final bits)

pt =

n∑
i=1

αiλi
tq(i).

For regular, connected, bipartite graph, |λ2| < 1, …, |λn| < 1. Hence
pt → α1q(1).
We are done ifα1 = 1. To determineα1, recallp0 =

∑n
i=1 αiq(i). Taking

inner product withq(1):

p0 · q(1) =
n∑

i=1

αiq(i) · q(1) = α1q(1) · q(1).

Sinceq(1) must be (a scalar multiple of) the uniform distribution,

p0 · q(1) = 1/n and q(1) · q(1) = 1/n,

henceα1 must be 1. �
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Directed graphs and PageRank

Theorem (Uniqueness)
An undirected, regular, connected, non-bipartite graph has a unique
stationary distributionp∗.
Further, given any initial distributionp0,

lim
t→∞

pt = p∗.

I A similar theorem (suitably modified) holds for directed, non-regular
graphs: Perron–Frobenius theorem

I Limiting distributionp∗ not necessarily uniform
I PageRank iteratively computes the distributionpt = p0Kt from an

arbitrary initial distributionp0
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Part II:
Connections to Theoretical Computer Science
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Spectral graph theory and expanders

I Spectral graph theory: study of graph eigenvalues λ1, …, λn and
graph properties

I Graphs with λ2 much smaller than λ1 = 1 are called expanders
Valuable to computer science

I For d-regular graphs, how small can λ2 be?
Recent breakthrough: Yale theoretical computer scientists (Marcus,
Spielman, and Srivastava) constructed bipartite graphs for any degree
d with

max{|λ2|, |λn−1|} 6 2
√
d − 1/d.

Smallest possible (Alon–Boppana)
Their novel techniques also resolve 54-year-old Kadison–Singer
problem in Mathematics and engineering
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Matrix multiplication and computational complexity

I Given twomatricesA andB of size n, computeAB
I Recall (AB)ij =

∑
k AikBkj

Straightforward algorithm requires roughly n3 elementary operations

I Strassen algorithm: roughly nlog2 7 ≈ n2.807 elementary operations
I Le Gall algorithm (current best): roughly n2.373 elementary operations
I Is n2 possible?

If so, potentially very useful
If not, why not?
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