Random Walks, PageRank, and Computer Science

Siu On Chan

Department of Computer Science and Engineering
The Chinese University of Hong Kong
July 30, 2015

Yahoo in 1996: Human-edited directory

Yellow Pages - People Search - City Maps -- News Headlines - Stock Quotes - Sports Scores

- Arts - - Humanities, Photography, Architecture, ...
- Business and Economy [Xtra!] - - Directory, Investments, Classifieds, ...
- Computers and Internet [Xtra!] - Internet, WWW, Software, Multimedia, ...
- Education - - Universities, K-12, Courses, ...
- Entertainment [Xtra!] - - TV, Movies, Music, Magazines, ...
- Government - - Politics [Xtra!], Agencies, Law, Military, ...
- Health [Xtra!] - - Medicine, Drugs, Diseases, Fitness, ...
- News [Xtra!] - - World [Xtra!], Daily, Current Events, ...

Only 5 directory entries for "Linear Algebra"

TAHOO: ©-3-3

Top:Science:Mathematics:Linear Algebra

Search Options

- Search all of Yahoo Search only in Linear Algebra
- I Hate Linear Algebra
- Java Script Linear Algebra - calculate simple matrix operations.
- Linear Algebra WebNotes - undergraduate course at the University of Nebraska-Lincoln. Contains lectures, homework assignments, Maple examples, and a discussion page.
- Slitex Foilset CPS615 Gauss Seidel Finite Element Methods and Conjugate Gradient - discusses sequential and parallel Gauss Seidel and Jacobi iteration, finite element methods applied to Laplace's equation in 2D, and the Conjugate Gradient method.
- Solving of linear equationsystems

Google today

- ~10,000,000 Linear Algebra pages, ranked mostly by importance

Linear algebra | Khan Academy
https://www.khanacademy.org/math/linear-algebra * Khan Academy *
Linear algebra describes things in two dimensions, but many of the concepts can be extended into three, four or more. Linear algebra implies two dimensional ...
Vectors and spaces - Matrix transformations - Alternate coordinate systems - Vectors
Linear algebra - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Linear_algebra • Wikipedia •
Linear algebra is the branch of mathematics concerning vector spaces and linear
mappings between such spaces. It includes the study of lines, planes, and subspaces, but is also concerned with properties common to all vector spaces.
List of linear algebra topics - Basis - Rank - Category:Linear algebra

Free Linear Algebra textbook
joshua.smcvt.edu/linearalgebra/ - Saint Michael's College *
Linear Algebra is a text for a first US undergraduate Linear Algebra course. It is Free.
You can use it as a main text, as a supplement, or for independent study.
Linear Algebra | Mathematics | MIT OpenCourseWare
ocw.mit.edu > Courses > Mathematics ~ MIT OpenCourseWare *
This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, ...

Part I:

PageRank and Random walk

PageRank Algorithm

- Named after Larry Page, Google cofounder and current CEO
- Determines webpages' importance only by link structure of the directed graph of webpages

PageRank Algorithm

- Named after Larry Page, Google cofounder and current CEO
- Determines webpages' importance only by link structure of the directed graph of webpages
- Based on stationary distribution of a random walk

PageRank Algorithm

- Named after Larry Page, Google cofounder and current CEO
- Determines webpages' importance only by link structure of the directed graph of webpages
- Based on stationary distribution of a random walk
- Spectral graph theory!
- For simplicity, focus on undirected, regular graphs in this talk

Random Walk

- Stochastic progress on a graph (undirected for now)

Random Walk

- Stochastic progress on a graph (undirected for now)
- Starts from a vertex, at each time step t moves to a uniformly random neighbour of the current vertex

Distribution \mathbf{p}_{t}

Probability transition matrix \mathbf{K}
Row vector \mathbf{p}_{t} : distribution at time t

- $\mathbf{p}_{t+1}=\mathbf{p}_{t} \mathbf{K}$
- $\mathbf{p}_{t}=\mathbf{p}_{0} \mathbf{K}^{t}$
- Does \mathbf{p}_{t} converge as t increases?

Stationary distribution

If \mathbf{p}_{t} converges, the limiting distribution \mathbf{p}_{∞} must be stationary

$$
\mathbf{p}_{\infty} \mathbf{K}=\mathbf{p}_{\infty}
$$

- uniform distribution always a stationary distribution (for an undirected, regular graph)

Limiting distribution: unique?

Limiting distribution: unique?

- Not unique on disconnected graphs
(Some vertex not reachable from some other vertex via intermediate vertices)

Limiting distribution: unique?

- Not unique on disconnected graphs (Some vertex not reachable from some other vertex via intermediate vertices)
- Not unique on bipartite graphs
(Can partition all vertices into two subsets V_{1}, V_{2} so that all edges only go between V_{1} and V_{2})

Unique limiting distribution

Theorem (Uniqueness)
An undirected, regular, connected, non-bipartite graph has a unique stationary distribution \mathbf{p}_{*}.
Further, given any initial distribution \mathbf{p}_{0},

$$
\lim _{t \rightarrow \infty} \mathbf{p}_{t}=\mathbf{p}_{*} .
$$

Eigenvalues and eigenvectors

$\lambda \in \mathbb{R}$ is an eigenvalue and $\mathbf{q} \in \mathbb{R}^{n}$ is an eigenvector of \mathbf{K} if

$$
\mathbf{q} \mathbf{K}=\lambda \mathbf{q}
$$

Fact: Transition matrix \mathbf{K} of an undirected graph is real symmetric
Lemma (Spectral Theorem)
Any $n \times n$ real symmetric matrix \mathbf{K} has n eigenvalue-eigenvector pairs

$$
\begin{gathered}
\mathbf{q}^{(1)} \mathbf{K}=\lambda_{1} \mathbf{q}^{(1)} \\
\vdots \\
\mathbf{q}^{(\mathbf{n})} \mathbf{K}=\lambda_{n} \mathbf{q}^{(\mathbf{n})}
\end{gathered}
$$

such that $\left\{\mathbf{q}^{(1)}, \ldots, \mathbf{q}^{(\mathbf{n})}\right\}$ is an orthogonal basis

Proof

Theorem (Uniqueness)

An undirected, regular, connected, non-bipartite graph has a unique stationary distribution \mathbf{p}_{*}.
Further, given any initial distribution \mathbf{p}_{0},

$$
\lim _{t \rightarrow \infty} \mathbf{p}_{t}=\mathbf{p}_{*} .
$$

Proof.
By spectral theorem, $\left\{\mathbf{q}^{(1)}, \ldots, \mathbf{q}^{(\mathbf{n})}\right\}$ forms a basis. Expand

$$
\begin{gathered}
\mathbf{p}_{0}=\sum_{i=1}^{n} \alpha_{i} \mathbf{q}^{(\mathbf{i})} . \\
\mathbf{p}_{t}=\mathbf{p}_{0} \mathbf{K}^{t}=\sum_{i=1}^{n} \alpha_{i} \mathbf{q}^{(\mathrm{i})} \mathbf{K}^{t} .
\end{gathered}
$$

Proof (continued)

$$
\mathbf{p}_{t}=\mathbf{p}_{0} \mathbf{K}^{t}=\sum_{i=1}^{n} \alpha_{i} \mathbf{q}^{(\mathbf{i})} \mathbf{K}^{t}
$$

Since

$$
\mathbf{q}^{(\mathbf{i})} \mathbf{K}^{t}=\lambda_{i} \mathbf{q}^{(\mathrm{i})} \mathbf{K}^{t-1}=\lambda_{i}^{2} \mathbf{q}^{(\mathbf{i})} \mathbf{K}^{t-2}=\cdots=\lambda_{i}^{t} \mathbf{q}^{(\mathrm{i})}
$$

the top equation becomes

$$
\mathbf{p}_{t}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{q}^{(\mathbf{i})}
$$

Graph spectrum

Assume eigenvalues are sorted

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}
$$

Graph spectrum

Assume eigenvalues are sorted

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}
$$

One can show

$$
1 \geqslant \lambda_{1} \quad \text { and } \quad \lambda_{n} \geqslant-1
$$

Recall: $\lambda_{1}=1$, uniform distribution as an eigenvector

Graph spectrum

Assume eigenvalues are sorted

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}
$$

One can show

$$
1 \geqslant \lambda_{1} \quad \text { and } \quad \lambda_{n} \geqslant-1
$$

Recall: $\lambda_{1}=1$, uniform distribution as an eigenvector
Proposition
$\lambda_{2}=1$ if and only if disconnected graph

Graph spectrum

Assume eigenvalues are sorted

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}
$$

One can show

$$
1 \geqslant \lambda_{1} \quad \text { and } \quad \lambda_{n} \geqslant-1
$$

Recall: $\lambda_{1}=1$, uniform distribution as an eigenvector
Proposition
$\lambda_{2}=1$ if and only if disconnected graph

Proposition

$\lambda_{n}=-1$ if and only if bipartite graph

Proof (final bits)

$$
\mathbf{p}_{t}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{t} \mathbf{q}^{(\mathbf{i})}
$$

For regular, connected, bipartite graph, $\left|\lambda_{2}\right|<1, \ldots,\left|\lambda_{n}\right|<1$. Hence $\mathbf{p}_{t} \rightarrow \alpha_{1} \mathbf{q}^{(1)}$.
We are done if $\alpha_{1}=1$. To determine α_{1}, recall $\mathbf{p}_{0}=\sum_{i=1}^{n} \alpha_{i} \mathbf{q}^{(\mathbf{i})}$. Taking inner product with $q^{(1)}$:

$$
\mathbf{p}_{0} \cdot \mathbf{q}^{(\mathbf{1})}=\sum_{i=1}^{n} \alpha_{i} \mathbf{q}^{(\mathbf{i})} \cdot \mathbf{q}^{(\mathbf{1})}=\alpha_{1} \mathbf{q}^{(\mathbf{1})} \cdot \mathbf{q}^{(\mathbf{1})}
$$

Since $q^{(1)}$ must be (a scalar multiple of) the uniform distribution,

$$
\mathbf{p}_{0} \cdot \mathbf{q}^{(1)}=1 / n \quad \text { and } \quad \mathbf{q}^{(1)} \cdot \mathbf{q}^{(1)}=1 / n,
$$

hence α_{1} must be 1 .

Directed graphs and PageRank

Theorem (Uniqueness)

An undirected, regular, connected, non-bipartite graph has a unique stationary distribution \mathbf{p}_{*}.
Further, given any initial distribution \mathbf{p}_{0},

$$
\lim _{t \rightarrow \infty} \mathbf{p}_{t}=\mathbf{p}_{*} .
$$

- A similar theorem (suitably modified) holds for directed, non-regular graphs: Perron-Frobenius theorem
- Limiting distribution \mathbf{p}_{*} not necessarily uniform
- PageRank iteratively computes the distribution $\mathbf{p}_{t}=\mathbf{p}_{0} \mathbf{K}^{t}$ from an arbitrary initial distribution \mathbf{p}_{0}

Part II:
 Connections to Theoretical Computer Science

Spectral graph theory and expanders

- Spectral graph theory: study of graph eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and graph properties

Spectral graph theory and expanders

- Spectral graph theory: study of graph eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and graph properties
- Graphs with λ_{2} much smaller than $\lambda_{1}=1$ are called expanders Valuable to computer science

Spectral graph theory and expanders

- Spectral graph theory: study of graph eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and graph properties
- Graphs with λ_{2} much smaller than $\lambda_{1}=1$ are called expanders Valuable to computer science
- For d-regular graphs, how small can λ_{2} be? Recent breakthrough: Yale theoretical computer scientists (Marcus, Spielman, and Srivastava) constructed bipartite graphs for any degree d with

$$
\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n-1}\right|\right\} \leqslant 2 \sqrt{d-1} / d
$$

Smallest possible (Alon-Boppana)

Spectral graph theory and expanders

- Spectral graph theory: study of graph eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and graph properties
- Graphs with λ_{2} much smaller than $\lambda_{1}=1$ are called expanders Valuable to computer science
- For d-regular graphs, how small can λ_{2} be? Recent breakthrough: Yale theoretical computer scientists (Marcus, Spielman, and Srivastava) constructed bipartite graphs for any degree d with

$$
\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n-1}\right|\right\} \leqslant 2 \sqrt{d-1} / d
$$

Smallest possible (Alon-Boppana)
Their novel techniques also resolve 54-year-old Kadison-Singer problem in Mathematics and engineering

Matrix multiplication and computational complexity

- Given two matrices \mathbf{A} and \mathbf{B} of size n, compute $\mathbf{A B}$
- Recall (AB) ${ }_{i j}=\sum_{k} \mathbf{A}_{i k} \mathbf{B}_{k j}$

Straightforward algorithm requires roughly n^{3} elementary operations

Matrix multiplication and computational complexity

- Given two matrices \mathbf{A} and \mathbf{B} of size n, compute $\mathbf{A B}$
- Recall (AB) $)_{i j}=\sum_{k} \mathbf{A}_{i k} \mathbf{B}_{k j}$ Straightforward algorithm requires roughly n^{3} elementary operations
- Strassen algorithm: roughly $n^{\log _{2} 7} \approx n^{2.807}$ elementary operations
- Le Gall algorithm (current best): roughly $n^{2.373}$ elementary operations

Matrix multiplication and computational complexity

- Given two matrices \mathbf{A} and \mathbf{B} of size n, compute $\mathbf{A B}$
- Recall (AB) $)_{i j}=\sum_{k} \mathbf{A}_{i k} \mathbf{B}_{k j}$ Straightforward algorithm requires roughly n^{3} elementary operations
- Strassen algorithm: roughly $n^{\log _{2} 7} \approx n^{2.807}$ elementary operations
- Le Gall algorithm (current best): roughly $n^{2.373}$ elementary operations
- Is n^{2} possible?

If so, potentially very useful If not, why not?

