暑期班 Summer Class 2014


微分幾何初探

課程編號:SAYT1134

上課日期:16/7, 18/7, 21/7, 23/7, 25/7, 28/7, 30/7, 1/8, 4/8, 2014

考試日期:7/8/2014

上課時間:9:30am-12:00nn(基本課),1:30p.m.-4:30p.m.(導修課)

上課地點:香港中文大學科學館L1室

任教教授:劉智軒博士 (香港中文大學)

大學認可:中文大學2學分

對象:準備升上中五或中六的同學參加,學員須對微積分與幾何有優良的知識

內容簡介:若對物理有認識則更有幫助。本科將微積分與幾何直觀緊密結合起來,引領同學跳出直線、平面和圓錐曲線的桎梏,進入多姿多釆的曲線與曲面的天地堙C同學將運用微積分包括偏微分,來描述空間的曲線與曲面,計算曲線的切向量、法向量和曲率、曲面的切平面、測地線和高斯曲率,並進一步認識如Gauss-Bonnet 等深刻的幾何定理。


Towards Differential Geometry

Course code:SAYT1134

Date:16/7, 18/7, 21/7, 23/7, 25/7, 28/7, 30/7, 1/8, 4/8, 2014

Examination Date: 7/8/2014

Time:9:30am-12:00pm(Lecture),1:30p.m.-4:30p.m.(Tutorial session)

Venue:CRoom L1, Science Centre (SC), The Chinese University of Hong Kong

Teacher: Dr. LAU Chi Hin(CUHK)

University Recognition: 2 credits of CUHK

Expected applicants:have good knowledge of calculus, and are advancing to Secondary 5 or 6

Introduction: An exposure to physics will be helpful. This course, combining the knowledge of calculus and geometric intuition, leads students to explore the fruitful variety of curves and surfaces beyond lines, planes, and conics. Students will use calculus up to partial differentiation to describe curves and surfaces, to calculate the tangent vector, normal vector and curvature, tangent plane, geodesic and Gaussian curvature. Other essential geometric theorems, such as Gauss-Bonnet, will be introduced.

網上報名(Online application)


入學試免試條款 Conditions for Admission Screening Test Exemption

凡達到以下其中一項條款的申請人,可免除入學試而獲得本科的直接取錄。曾修讀「數學啟導修習I或II」的學生,仍須參加入學試,但可獲優先考慮。

Applicants who satisfy either one of the following condition may be exempted from Admission Screening Test and will be directly admitted into this course. Those who had taken "Enrichment Mentoring Mathematics I or II" still need to sit the Test, but will be considered with priority.

* 曾修讀並及格完成 「複數的幾何面貌」
* Passed Geometric Perspectives of Complex Numbers before

* 曾於過去獲得本課程學分科目取錄(包括「微分幾何初探」、「數論與密碼學」、「數學分析入門」、「非歐幾何賞析」)
* Being admitted in one of the following courses(Credit-bearing)(Towards Differential Geometry, Number Theory and Cryptography, Mathematical Analysis: An Overture and Understanding Non-Euclidean Geometry) before
TOP